1998
DOI: 10.1090/surv/061
|View full text |Cite
|
Sign up to set email alerts
|

Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
101
0
9

Year Published

2006
2006
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 89 publications
(114 citation statements)
references
References 0 publications
4
101
0
9
Order By: Relevance
“…Таким образом, для выраже-ния реализуется случай предельного круга тогда и только тогда, когда все решения уравнения (1.3) принадлежат пространству ℒ 2 (R + ). Приведенные выше сведения хорошо известны и извлечены нами из работ [5], [6]. …”
Section: теперь докажем что справедливаunclassified
“…Таким образом, для выраже-ния реализуется случай предельного круга тогда и только тогда, когда все решения уравнения (1.3) принадлежат пространству ℒ 2 (R + ). Приведенные выше сведения хорошо известны и извлечены нами из работ [5], [6]. …”
Section: теперь докажем что справедливаunclassified
“…, z n -характеристические числа матрицы A, т.е. корни уравнения F n (z, ν) = 0, если ν < 0, и F n (z, 0)−λ = 0, если ν = 0, расположенные в порядке Re z 1 Re z 2 · · · Re z n ; а q ij , i, j = 1, 2, . .…”
Section: пусть выполненоunclassified
“…Following work [2] (see also [4]), in Section 4 we define the product of two quasi-differential expression and we propose a method allowing us to obtain asymptotic formulae for the solutions to equation (3) in the case, when the left hand side of this equations is represented as the product of two expressions in the class defined in Section 2. Posing additional assumptions for the matrix ensuring the symmetricity (formal self-adjointness) of the expression , see [1,Sect. I], in Section 5 we define the minimal closed symmetric operator generated by this expression in the space of Lebesgue square integrable functions in [1, +∞) (in the Hilbert space ℒ 2 [1, +∞)).…”
Section: Introductionmentioning
confidence: 99%
“…A]. Moreover, the Shin-Zettl matrices 2 and 2 +1 constructed in [1] and generating expression (7)) are such that if we replace the smoothness of the entries in these matrices by their local integrability and if the derivatives in formulae (1) and (2) are treated in the distribution sense, then we can open the brackets and a regular generalized function in (2) for ∈ ( ) is represented as (7) in terms of the theory of generalized functions. At that we stress that the coefficients and in expression (7) should be only locally integrable (see [6], [7]).…”
Section: Introductionmentioning
confidence: 99%