В работе получены асимптотические формулы при $x\to \infty$
для фундаментальной системы решений уравнения вида
\begin{equation*}
l(y): = (-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y, \qquad
x\in [1,\infty),
\end{equation*}
где локально суммируемая функция $p$ допускает представление
$$
p(x) = (1+r(x))^{-1},\qquad r\in L^1(1,\infty),
$$
а $q$ - обобщенная функция, представимая при некотором фиксированном $k$, $0\leqslant k\leqslant n$, в виде
$q= \sigma^{(k)}$, где
$$
\begin{aligned}
\sigma &\in L^1(1,\infty), \qquad если\quad k <n,
|\sigma|(1+|r|) (1+ |\sigma|)
&\in L^1(1,\infty), \qquad если\quad k = n.
\end{aligned}
$$
Аналогичные результаты получены для функций, допускающих при некотором фиксированном $k$, $0\leqslant k\leqslant n$, представление
$$
p(x) = x^{2n+\nu}(1+ r(x))^{-1},\qquad
q= \sigma^{(k)},\qquad \sigma(x)=x^{k+\nu} (\beta +s(x)),
$$
где функции $r$ и
$s$ удовлетворяют некоторым условиям интегрального убывания. Получены также теоремы об индексах дефекта минимального симметрического оператора, порожденного дифференциальным выражением $l(y)$
(при условии вещественности функций $p$ и $q$), и теоремы о спектрах соответствующих самосопряженных расширений. Полные доказательства даны только для случая $n=1$.
Библиография: 18 названий.
Abstract. In the paper we find the leading term of the asymptotics at infinity for some fundamental system of solutions to a class of linear differential equations of arbitrary order = , where is a fixed complex number. At that we consider a special class of ShinZettl type and is a quasi-differential expression generated by the matrix in this class. The conditions we assume for the primitives of the coefficients of the quasi-differential expression , that is, for the entries of the corresponding matrix, are not related with their smoothness but just ensures a certain power growth of these primitives at infinity. Thus, the coefficients of the expression can also oscillate. In particular, this includes a wide class of differential equations of arbitrary even or odd order with distribution coefficients of finite order. Employing the known definition of two quasi-differential expressions with nonsmooth coefficients, in the work we propose a method for obtaining asymptotic formulae for the fundamental system of solutions to the considered equation in the case when the left hand side of this equations is represented as a product of two quasi-differential expressions.The obtained results are applied for the spectral analysis of the corresponding singular differential operators. In particular, assuming that the quasi-differential expression is symmetric, by the known scheme we define the minimal closed symmetric operator generated by this expression in the space of Lebesgue square-integrable on [1, +∞) functions (in the Hilbert space ℒ 2 [1, +∞)) and we calculate the deficiency indices for this operator.Keywords: Quasi-derivative, quasi-differential expression, the main term of asymptotic of the fundamental system of solutions, minimal closed symmetric differential operator, deficiency numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.