The control technique for an exoskeleton system for lower limb rehabilitation is complicated, and numerous internal and external elements must be taken into account, in addition to the uncertainties in the system model. In this paper, through the analysis of the lower extremity exoskeleton is utilized to obtain the corresponding equation and its linearized form. The nonlinear differential equations have been linearized by using Jacobean’s method in order to facilitate the controller design. Considering the interior and external factors of the connecting rod, the uncertain elements are introduced and therefore the optimal control technique is applied to regulate the system. An optimal state feedback control strategy of Linear Quadratic Regulator (LQR), and LQR-Servo have been implemented in this work. Finally, the physical parameters of the Knee-Ankle Orthosis (KAO) exoskeleton are used, and the simulation results show the advantage and applicability of the proposed controller’s design of the Knee-Ankle orthosis system.
Index Terms— Rehabilitation, Knee-Ankle orthosis (KAO), Optimal control, LQR-Servo controller.