<p style='text-indent:20px;'>This paper deals with a quasilinear parabolic-elliptic chemo-repulsion system with nonlinear signal production</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)+\chi\nabla\cdot(u(u+1)^{\alpha-1}\nabla v)+f(u), & (x,t)\in \Omega\times (0,\infty), \\ & 0 = \Delta v-v+u^{\beta}, & (x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega \subset \mathbb{R}^{n}(n\geq1), $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M2">\begin{document}$ \chi,\beta>0,\alpha\in\mathbb{R}, $\end{document}</tex-math></inline-formula> the nonlinear diffusion <inline-formula><tex-math id="M3">\begin{document}$ \phi\in C^{2}([0,\infty)) $\end{document}</tex-math></inline-formula> satisfies <inline-formula><tex-math id="M4">\begin{document}$ \phi(u)\geq(u+1)^{m} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ m\in\mathbb{R}, $\end{document}</tex-math></inline-formula> and the function <inline-formula><tex-math id="M6">\begin{document}$ f\in C^{1}([0,\infty)) $\end{document}</tex-math></inline-formula> is a generalized growth term.</p><p style='text-indent:20px;'><inline-formula><tex-math id="M7">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> When <inline-formula><tex-math id="M8">\begin{document}$ f\equiv0, $\end{document}</tex-math></inline-formula> it is shown that the solution of the above system is global and uniformly bounded for all <inline-formula><tex-math id="M9">\begin{document}$ \chi,\beta>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ m,\alpha\in\mathbb{R} $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'><inline-formula><tex-math id="M11">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> When <inline-formula><tex-math id="M12">\begin{document}$ f\not\equiv0 $\end{document}</tex-math></inline-formula> and assume that <inline-formula><tex-math id="M13">\begin{document}$ f(u)\leq ku-bu^{\gamma+1} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M14">\begin{document}$ k,b,\gamma>0, $\end{document}</tex-math></inline-formula> it is proved that the solution of the above system is also global and uniformly bounded for all <inline-formula><tex-math id="M15">\begin{document}$ \chi,\beta>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ m,\alpha\in\mathbb{R}. $\end{document}</tex-math></inline-formula></p>