Abstract:Abstract. Let C be an algebraic geometric code of dimension k and length n constructed on a curve X over F q . Let s(C) be the state complexity of C and set w(C) := min{k, n−k}, the Wolf upper bound on s(C). We introduce a numerical function R that depends on the gonality sequence of X and show that s(C) ≥ w(C) − R(2g − 2), where g is the genus of X . As a matter of fact, R(2g − 2) ≤ g − (γ 2 − 2) with γ 2 being the gonality over F q of X , and thus in particular we have that s(C) ≥ w(C) − g + γ 2 − 2.
“…Conversely, from Riemann-Roch theorem it follows that γ i ≤ i − 1 + g with equality for i > g. The gonality sequence GS(X ) verifies a symmetry property (similar to the symmetry property for semigroups): for every integer r, it holds that r ∈ GS(X ) if and only if 2g − 1 − r ∈ GS(X ), cf. [37]. In general, computing GS(X ) is a difficult task but for plane curves this sequence is entirely known and depends only on the degree of X , see [43].…”
Abstract. We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
“…Conversely, from Riemann-Roch theorem it follows that γ i ≤ i − 1 + g with equality for i > g. The gonality sequence GS(X ) verifies a symmetry property (similar to the symmetry property for semigroups): for every integer r, it holds that r ∈ GS(X ) if and only if 2g − 1 − r ∈ GS(X ), cf. [37]. In general, computing GS(X ) is a difficult task but for plane curves this sequence is entirely known and depends only on the degree of X , see [43].…”
Abstract. We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
“…Esta cota mejora la cota de 56,54,52,51,48,46,44,43,42,41,40,39,38,36,35,34,33,32,31,30,29,28,28,26,25,24,23,22,21,20,21,18,19,16,17,16,13,12,14,10,13,8,12,10,9,8,8,6,8,7,4,5,…”
“…• Calcular pesos hierárquicos dos códigos GH s e refinar as cotas encontradas usando a generalização da distância Feng-Rao [22], [1], e complexidade de treliças [23].…”
A igreja Batista Vida Nova, que me acolheram e tem vivido do meu lado cada uma das conquistas que tenho alcançado neste país abençoado, o Brasil. A minhas famílias em Bucaramanga (Colômbia), Campinas e Pernambuco (Brasil). Ao meu orientador Prof. Dr. Fernando Torres, pela sua orientação, ensinamentos e em especial pelos momentos que compartilhamos como amigos durante este trabalho. Ao Prof. Dr. Paulo Brumatti, pelo tempo que me dedicou na fase final do trabalho que foi essencial para terminar. Ao Prof. Dr. Carlos Munuera, pelo apoio, incentivo e valiosos comentários do trabalho. Aos professores da banca examinadora, por todas suas sugestões, importantes para melhorar o trabalho. Aos funcionários da Unicamp, que direta e indiretamente fizeram parte desta conquista pela sua presença e trabalho, em particular Cidinha, Ednaldo e Tânia. Aos meus amigos e colegas, em especial ... a TODOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.