2008
DOI: 10.1515/eqc.2008.55
|View full text |Cite
|
Sign up to set email alerts
|

Bounds for Quantile-Based Risk Measures of Functions of Dependent Random Variables

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2008
2008
2008
2008

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 10 publications
0
2
0
Order By: Relevance
“…For concave distortion functions one can compute upper bounds for D g (Ψ) whenever Ψ is the sum of the risks or a function like stop-loss sum using stochastic ordering properties (see [7]). If there are only two risk factors, it is also possible to obtain lower bounds.…”
Section: Bounds For Various Quantile-based Measuresmentioning
confidence: 99%
See 1 more Smart Citation
“…For concave distortion functions one can compute upper bounds for D g (Ψ) whenever Ψ is the sum of the risks or a function like stop-loss sum using stochastic ordering properties (see [7]). If there are only two risk factors, it is also possible to obtain lower bounds.…”
Section: Bounds For Various Quantile-based Measuresmentioning
confidence: 99%
“…If it is possible to compute the bounds following the approach proposed by Goncalves et al [7], which, in fact, has the advantages to provide sharp bounds and require only simple computations, then the following method should be applied in cases where stochastic ordering relations are no longer useful (for instance, in the case of convex distortion function).…”
Section: Bounds For Various Quantile-based Measuresmentioning
confidence: 99%