The Nelson–Siegel framework published by Diebold and Li created an important benchmark and originated several works in the literature of forecasting the term structure of interest rates. However, these frameworks were built on the top of a parametric curve model that may lead to poor fitting for sensible term structure shapes affecting forecast results. We propose DCOBS with no-arbitrage restrictions, a dynamic constrained smoothing B-splines yield curve model. Even though DCOBS may provide more volatile forward curves than parametric models, they are still more accurate than those from Nelson–Siegel frameworks. DCOBS has been evaluated for ten years of US Daily Treasury Yield Curve Rates, and it is consistent with stylized facts of yield curves. DCOBS has great predictability power, especially in short and middle-term forecast, and has shown greater stability and lower root mean square errors than an Arbitrage-Free Nelson–Siegel model.
The aim of this paper is to provide bounds for distorted risk measures when the joint distribution of the risk factors is unspecified but the marginal distributions are known. For convex distortion functions, a methodology to calculate the corresponding bounds is suggested and illustrated by several examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.