2018
DOI: 10.3389/fimmu.2018.00421
|View full text |Cite
|
Sign up to set email alerts
|

Bovine Herpesvirus-4-Based Vector Delivering Peste des Petits Ruminants Virus Hemagglutinin ORF Induces both Neutralizing Antibodies and Cytotoxic T Cell Responses

Abstract: Peste des Petits Ruminants Virus (PPRV) is an extremely infective morbillivirus that primarily affects goats and sheep. In underdeveloped countries where livestock are the main economical resource, PPRV causes considerable economic losses. Protective live attenuated vaccines are currently available but they induce antibody responses similar to those produced in PPRV naturally infected animals. Effective vaccines able to distinguish between vaccinated and naturally infected animals are required to PPRV control … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
20
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
9

Relationship

4
5

Authors

Journals

citations
Cited by 13 publications
(20 citation statements)
references
References 52 publications
0
20
0
Order By: Relevance
“…In light of these properties, BoHV-4 has been successfully developed as a veterinary vaccine vector in model animal species against a variety of infectious diseases. BoHV-4-vectored vaccines have successfully induced neutralizing antibody responses to bovine herpesvirus-1 (BoHV-1) and Bovine Viral Diarrhea Virus (BVDV) type 1 in rabbits [11, 12], neutralizing antibody responses to BVDV type 1 in sheep [13], neutralizing antibody responses to Bluetongue virus and to Peste de Petits Ruminants (PPR) virus in mice, respectively [14, 15], and protective viral neutralizing antibody responses against caprine herpesvirus-1 in goats [16]. Despite the success of the BoHV-4 platform in these non-BoHV-4 host species, and the intrinsic benefits of the BoHV-4 platform, immunization using BoHV-4 has never been attempted in cattle.…”
Section: Introductionmentioning
confidence: 99%
“…In light of these properties, BoHV-4 has been successfully developed as a veterinary vaccine vector in model animal species against a variety of infectious diseases. BoHV-4-vectored vaccines have successfully induced neutralizing antibody responses to bovine herpesvirus-1 (BoHV-1) and Bovine Viral Diarrhea Virus (BVDV) type 1 in rabbits [11, 12], neutralizing antibody responses to BVDV type 1 in sheep [13], neutralizing antibody responses to Bluetongue virus and to Peste de Petits Ruminants (PPR) virus in mice, respectively [14, 15], and protective viral neutralizing antibody responses against caprine herpesvirus-1 in goats [16]. Despite the success of the BoHV-4 platform in these non-BoHV-4 host species, and the intrinsic benefits of the BoHV-4 platform, immunization using BoHV-4 has never been attempted in cattle.…”
Section: Introductionmentioning
confidence: 99%
“…Splenocytes (4–5 × 10 6 /well in 24-well plates) from immunized animals were stimulated in vitro with VP7(283) peptide [VP7(283–291) TAILNRTTL; 10 μg/ml] for 6 days and used as effector cells in flow cytometry-based cytotoxicity assays. Syngenic RMA/S cells pulsed as previously described ( 40 ) with 10 μg/ml of relevant peptide VP7(283) or irrelevant peptide NS1(152) [NS1(152–160) GQIVNPTFI] from BTV [known to elicit T-cell responses in IFNAR (−/−) mice ( 22 , 26 )] were used as target cells. Target cells were labeled with PKH67 dye as described in Rojas et al ( 41 ), and cytotoxicity was performed as previously described in Rojas et al ( 42 ).…”
Section: Methodsmentioning
confidence: 99%
“…The H and F glycoproteins are the principal targets of neutralizing antibodies of the humoral immune response. These two glycoproteins have been considered the best to include in vaccine candidates and their genes have been cloned and expressed in several recombinant, replication-defective viral vectors: (i) Poxviruses ( 39 , 40 ), (ii), Bovine-Herpes viruses ( 43 ), (iii) Newcastle disease virus ( 44 ), and (iv) Adenoviruses ( 33 , 34 , 36 , 37 , 68 ).…”
Section: Potential Vaccines Against Pprvmentioning
confidence: 99%