The neuropathological mechanism underlying presbycusis remains unclear. This study aimed to illustrate the mechanism of neurovascular coupling associated with cognitive impairment in patients with presbycusis. We assessed the coupling of cerebral blood perfusion with spontaneous neuronal activity by calculating the correlation coefficients between cerebral blood flow and blood oxygen level-dependent-derived quantitative maps (amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation, regional homogeneity, degree centrality). Four neurovascular coupling metrics (cerebral blood flow-amplitude of low-frequency fluctuation, cerebral blood flow-fractional amplitude of low-frequency fluctuation, cerebral blood flow-regional homogeneity and cerebral blood flow-degree centrality) were compared at the global and regional levels between the presbycusis group and the healthy control group, and the intrinsic association between the altered neurovascular coupling metrics and the neuropsychological scale was further analysed in the presbycusis group. At the global level, neurovascular coupling was significantly lower in the presbycusis group than in the control group and partially related to cognitive level. At the regional level, neurovascular biomarkers were significantly elevated in three brain regions and significantly decreased in one brain region, all of which involved the Papez circuit. Regional neurovascular coupling provides more information than global neurovascular coupling, and neurovascular coupling dysfunction within the Papez circuit has been shown to reveal the causes of poor cognitive and emotional responses in age-related hearing loss patients.