IntroductionHuntington disease (HD) is an autosomal-dominant neurodegenerative disorder caused by the pathogenic expansion of the polyglutamine (polyQ) N-terminal stretch in the huntingtin protein (HTT; encoded by HTT). HD is characterized by the dysfunction and death of neurons in the brain, leading to devastating cognitive, psychiatric, and motor symptoms in patients. Studies in multiple cell and animal model systems support the notion that polyQ expansion in mutant Htt leads to the gain of new toxic functions and loss of the neuroprotective functions of the WT Htt (1).Although some of its functions are linked to transcriptional activities in health and disease, Htt is primarily a cytoplasmic protein that associates with microtubules (MTs) and vesicles. Htt regulates intracellular trafficking of various organelles, including vesicles, by interacting with the dynein/dynactin pathway (2-4). Htt facilitates MT-dependent transport by interacting directly with dynein (2) and indirectly via huntingtin-associated protein 1 (HAP1), which binds to the dynactin p150 Glued subunit (3,(5)(6)(7). In pathological situations, the Htt-HAP1-dynactin complex is altered, resulting in a reduction of vesicular transport in neurons (3). These findings show that Htt integrates vesicular transport by regulating the activity of specific protein complexes containing the dynein/dynactin and kinesin 1 complexes and adaptor proteins such as HAP1.With 2 patterns of axonemal MTs (9 + 0 in primary cilia and 9 + 2 in motile cilia), cilia are involved in sensory role, motility, and flow generation. Within the last 5 years, the importance of this