2019 9th International Conference on Computer and Knowledge Engineering (ICCKE) 2019
DOI: 10.1109/iccke48569.2019.8964846
|View full text |Cite
|
Sign up to set email alerts
|

Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
53
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 154 publications
(54 citation statements)
references
References 14 publications
0
53
0
1
Order By: Relevance
“…YÖK Tez Merkezi'nden edinilen verilere göre; 2010-2020 yılları arasında görüntü işleme konusunda yazılan 60 doktora tezinden 24 tanesinin biyomedikal alanda olduğu tespit edilmiştir [13]. Ayrıca son yıllardaki literatür incelendiğinde ortopedi dalının yanında görüntü işleme konusunun göz hastalıkları, nöroloji, göğüs hastalıkları, dermatoloji, kardiyoloji gibi diğer tıp dallarında da uygulandığı görülmektedir [14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].…”
Section: Literatür çAlışmalarıunclassified
“…YÖK Tez Merkezi'nden edinilen verilere göre; 2010-2020 yılları arasında görüntü işleme konusunda yazılan 60 doktora tezinden 24 tanesinin biyomedikal alanda olduğu tespit edilmiştir [13]. Ayrıca son yıllardaki literatür incelendiğinde ortopedi dalının yanında görüntü işleme konusunun göz hastalıkları, nöroloji, göğüs hastalıkları, dermatoloji, kardiyoloji gibi diğer tıp dallarında da uygulandığı görülmektedir [14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].…”
Section: Literatür çAlışmalarıunclassified
“…Even though the results are quite high, this method only able to detect the position of the tumor and cannot recognize the image that contained the tumor or not. The combination of the feature extraction algorithm and CNN-SoftMax is proposed for detecting brain tumors [22]. This method claims to be able to obtain high accuracy results.…”
Section: Dataset and Related Workmentioning
confidence: 99%
“…Deep learning (DL) models have demonstrated increasing utility within the field of oncology and particular promise in analyzing growing amounts of oncologic imaging [1,2]. DL models have been validated across a variety of diagnostic imaging modalities including MRI, CT, and X-ray images with classification accuracy often rivaling trained clinicians [3][4][5][6][7][8]. As widespread clinical implementation of DL models becomes a more realistic possibility, the safety of such models in healthcare is becoming a topic of increasing importance [9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…Deep learning (DL) algorithms have the promise to improve the quality of diagnostic image interpretation within oncology (1,2). Models generated from DL algorithms have been validated across a variety of diagnostic imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and X-ray images with classification accuracy often rivaling trained clinicians (3-9). However, the success of DL models depends, in part, on their generalizability and stability.…”
Section: Introductionmentioning
confidence: 99%