2018
DOI: 10.5120/ijca2018917915
|View full text |Cite
|
Sign up to set email alerts
|

Brain Tumor Segmentation using SLIC Superpixels and Optimized Thresholding Algorithm

Abstract: This paper deals with the implementation of a simple algorithm for automatic brain tumor segmentation. Brain tumor is commonly diagnosed by Computer tomography and Magnetic Resonance Imaging in clinical treatment. The paper uses Simple Linear Iterative Clustering (SLIC) to segment brain images according to their spatial and color proximities. The ratio of the mean and variance of the image pixels are determined in order to obtain an optimum threshold value. Region merging after thresholding was carried out. Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…Selain itu, penelitian yang dilakukan oleh [16] mengenai klasifikasi penutup lahan fusi citra lidar dan citra optik udara dengan menerapkan Superpixel Colorization menghasilkan rata-rata akurasi sebesar 90,40%. Penelitian lain juga banyak menggunakan segmentasi superpixel untuk pengolahan citra [17], [18], [19], [20].…”
Section: Pendahuluanunclassified
“…Selain itu, penelitian yang dilakukan oleh [16] mengenai klasifikasi penutup lahan fusi citra lidar dan citra optik udara dengan menerapkan Superpixel Colorization menghasilkan rata-rata akurasi sebesar 90,40%. Penelitian lain juga banyak menggunakan segmentasi superpixel untuk pengolahan citra [17], [18], [19], [20].…”
Section: Pendahuluanunclassified
“…Image segmentation techniques in computer vision partition the image into several parts based on specific image features like pixel intensity value, color, and texture [1]. Numerous approaches for brain image segmentation [2] have been proposed. Around these approaches work on the values of the clustering model and intensity threshold procedures.…”
Section: Introductionmentioning
confidence: 99%