Abstract:We discuss possible variations of the effective gravitational constant with length scale, predicted by most of alternative theories of gravity and unified models of physical interactions. After giving a brief general exposition, we review in more detail the predicted corrections to Newton's law of gravity in diverse brane world models. We consider various configurations in 5 dimensions (flat, de Sitter and AdS branes in Einstein and Einstein-Gauss-Bonnet theories, with and without induced gravity and possible … Show more
“…This topic has been subject to an extensive investigation [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,…”
In models with TeV-scale gravity it is expected that mini black holes will be produced in nearfuture accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n −n oscillations, flavor changing neutral currents, large mixing between leptons, etc.. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross-section for the production of black holes and their angular momentum distribution in these models with "split" fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
“…This topic has been subject to an extensive investigation [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,…”
In models with TeV-scale gravity it is expected that mini black holes will be produced in nearfuture accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n −n oscillations, flavor changing neutral currents, large mixing between leptons, etc.. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross-section for the production of black holes and their angular momentum distribution in these models with "split" fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
“…For instance, to observe the transition from inverse-square law of Newtonian gravitation imposed via extra dimensions in brane world models, some measurements such as submillimeter measurement of gravity are proposed and can be used to test our model [71,[88][89][90][91].…”
Abstract:We study the effect of the simplest geometry which is imposed via the topology of the universe by gauging non-relativistic particle model on torus and 3-torus with the help of symplectic formalism of constrained systems. Also, we obtain generators of gauge transformations for gauged models. Extracting corresponding Poisson structure of existed constraints, we show the effect of the shape of the universe on canonical structure of phase-spaces of models and suggest some phenomenology to prove the topology of the universe and probable non-commutative structure of the space. In addition, we show that the number of extra dimensions in the phase-spaces of gauged embedded models are exactly two. Moreover, in classical form, we talk over modification of Newton's second law in order to study the origin of the terms appeared in the gauged theory.
“…The four dimensional metric is induced on the hyper-surface y = 0. In the weak field approximation, this model gives a power law deformation of the usual Newtonian potential [3]. Unlike many other brane world models, the Randall-Sundrum model allows for the existence of infinite extra dimensions.…”
In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies. We also analyze the effect of extra dimensions on the two-point functions between galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.