Recently, significant efforts have been exerted to replace mineral oil with environmentally friendly oils due to safety and environmental issues. However, there is a need to clarify the physical mechanisms behind the ageing impact of these oils. The authors use advanced optical spectroscopy techniques in correlation with dielectric measurements to understand the ageing processes in environmentally friendly oils as well as mineral oil. Firstly, different samples of environmentally friendly oils and mineral oil were utilised to investigate the ageing mechanism. The samples were subjected to different ageing periods using a thermal accelerated ageing process. Secondly, the severity of the produced byproducts due to the oil degradation is examined based on several measured properties representing macroscopic and microscopic categories. The macroscopic category was evaluated through dielectric properties, including breakdown voltage, dielectric permittivity, and dissipation factor. The microscopic category, on the other hand, was assessed using techniques such as ultraviolet–visible absorption spectroscopy and photoluminescence spectroscopy. These techniques enabled a deep understanding of the molecular‐level changes occurring in the oil under ageing conditions, thereby getting new insights into oil ageing mechanisms. It is worth mentioning that natural ester oil demonstrated the most favourable performance across various properties under ageing conditions.