2020
DOI: 10.1007/978-981-15-5113-0_39
|View full text |Cite
|
Sign up to set email alerts
|

Breast Cancer Detection Using Deep Learning and Machine Learning: A Comparative Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 11 publications
0
4
0
1
Order By: Relevance
“…Makalah (Silva, Jesús, 2019) membahas integrasi teknik klasifikasi data mining dan pembelajaran ensemble untuk memprediksi jenis kekambuhan kanker payudara. Makalah (Sharma, Alpna, 2021) telah melakukan upaya untuk mendeteksi kanker payudara menggunakan jaringan saraf dalam menggunakan dataset kanker payudara Wisconsin. Studi (Nguyen, Cuong, Yong Wang, 2013) bertujuan untuk mendiagnosis dan prognostik kanker payudara menggunakan metode pembelajaran mesin berdasarkan pengklasifikasi hutan acak dan teknik pemilihan fitur.…”
Section: Pendahuluanunclassified
“…Makalah (Silva, Jesús, 2019) membahas integrasi teknik klasifikasi data mining dan pembelajaran ensemble untuk memprediksi jenis kekambuhan kanker payudara. Makalah (Sharma, Alpna, 2021) telah melakukan upaya untuk mendeteksi kanker payudara menggunakan jaringan saraf dalam menggunakan dataset kanker payudara Wisconsin. Studi (Nguyen, Cuong, Yong Wang, 2013) bertujuan untuk mendiagnosis dan prognostik kanker payudara menggunakan metode pembelajaran mesin berdasarkan pengklasifikasi hutan acak dan teknik pemilihan fitur.…”
Section: Pendahuluanunclassified
“…At last, in result the attained false positive rate address the poor condition of the patient and follow the doctor suggestions (Latif et al 2020). Moreover, interpretation of a mammogram is more difficult to identify the affection (Sharma et al 2021), because the abnormalities have only happened in a small specific area in the earlier stage that is measured as 0.5% (Hakim and Awale 2020).…”
Section: Introductionmentioning
confidence: 99%
“…Among them applications of deep learning algorithms have shown promising results. In healthcare sector, deep learning [ 8 ] has shown tremendous development in automatic disease prediction such as tuberculosis detection [ 9 , 10 ], cancer detection [ 11 , 12 ], tumor detection [ 13 , 14 ], bone fracture detection [ 15 , 16 ], genome sequence analysis [ 17 19 ] etc. In their study, Abbas et al [ 20 ], proposed a model named DeTraC that classifies chest X-ray images.…”
Section: Introductionmentioning
confidence: 99%