Breast cancer is considered a leading cause of deaths among women. Researches state that women around the world still face this problem, and because of its unawareness, it is many times left unattended in the budding stages. If correctly screened and detected early, then with proper treatment, this could stop the metastasis and reduce the pains and difficulties of the later stages. Screening methods such as x-ray-based mammography, ultrasound, PET scan, and magnetic resonance imaging (MRI) clinically exist for breast tumor investigation. It is very important that screening procedures should have high specificity and sensitivity for the detection of tumors. Additionally, these methods also have to placate concerns such as ease of the patient during imaging, high-resolution images for added precise elucidation, cost effectiveness, and the capacity to detect the malignantleading tumors in the early stage. Existing imaging techniques do not meet all of these conditions concurrently. In this scenario, ultra-wide band (UWB) technology has come into play the role of a useful alternative for screening and detection of breast tumors. This chapter discusses firstly probabilistic qualitative metrics which are used in measuring the quality of testing procedures, and then later UWB testing methods are discussed in brief.