Abstract. Microwave ultra-wide band UWB imaging system is a contemporary biomedical imaging technology for early detection of breast cancers. This imaging system requires the development of breast phantoms for experimental data analysis. In order to obtain realistic results, it is very important that these phantoms mimic the characteristics of real biological breast tissue as close as possible. For this purpose, scientists and engineers make use of the dielectric properties of human breast. This paper takes a survey of mathematical formulations used to determine biological dielectric properties and then takes a review of current breast phantoms being used in UWB imaging systems with reference to the analytical dielectric measurements.At present, breast phantoms are made, both, manually in laboratory utilizing different chemicals and also by using computational electromagnetic algorithms to introduce better heterogeneity in them. They can then easily be tested by doing computer simulations. In this review paper, emphasis is made on the phantoms which are made in laboratory for doing hardware experimentations.
In this paper, we have proposed an analytical body (breast-tissue) propagation model in terms of scattering parameters towards the design goal of a suitable ultra-wide band, (UWB) transceiver for early breast tumor detection. The scattering parameters are reflection ( and transmission coefficients (Τ). We considered a heterogeneous breast model consisting of skin, adipose and glandular tissues as body (breast) channel and planar wave to propagate through it for UWB frequency range. A tumor layer was also considered as an inner layer to investigate tumorous tissue effects. Effective dielectric properties and scattering parameters (through reflected/ scattered or forward transmitted signals) for the whole breast were determined. Due to dispersive nature of heterogeneous breast, Γ and T vary with frequency; showing their decisive nature for a particular center frequency of the UWB transceiver systems. In case of 2.0 GHZ and 4.5 GHz center frequency UWB system, the back propagated (reflected/ scattered) signals showed approximately 45.45% and 63.3% respectively higher amplitude than forward propagated signals for the breast channel with tumor, indicating high value of dispersion present in human breast tissues.
Breast cancer is considered a leading cause of deaths among women. Researches state that women around the world still face this problem, and because of its unawareness, it is many times left unattended in the budding stages. If correctly screened and detected early, then with proper treatment, this could stop the metastasis and reduce the pains and difficulties of the later stages. Screening methods such as x-ray-based mammography, ultrasound, PET scan, and magnetic resonance imaging (MRI) clinically exist for breast tumor investigation. It is very important that screening procedures should have high specificity and sensitivity for the detection of tumors. Additionally, these methods also have to placate concerns such as ease of the patient during imaging, high-resolution images for added precise elucidation, cost effectiveness, and the capacity to detect the malignantleading tumors in the early stage. Existing imaging techniques do not meet all of these conditions concurrently. In this scenario, ultra-wide band (UWB) technology has come into play the role of a useful alternative for screening and detection of breast tumors. This chapter discusses firstly probabilistic qualitative metrics which are used in measuring the quality of testing procedures, and then later UWB testing methods are discussed in brief.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.