The scope of the work undertaken in this paper was to explore the feasibility and reliability of using the Raman signature of aromatic amino acids as a marker in the detection of the presence of breast cancer and perhaps, even the prediction of cancer development in very early stages of cancer onset. To be able to assess this hypothesis, we collected most recent and relevant literature in which Raman spectroscopy was used as an analytical tool in the evaluation of breast cell lines and breast tissue, re-analyzed all the Raman spectra, and extracted all spectral bands from each spectrum that were indicative of aromatic amino acids. The criteria for the consideration of the various papers for this study, and hence, the inclusion of the data that they contained were two-fold: (1) The papers had to focus on the characterization of breast tissue with Raman spectroscopy, and (2) the spectra provided within these papers included the spectral range of 500–1200 cm−1, which constitutes the characteristic region for aromatic amino acid vibrational modes. After all the papers that satisfied these criteria were collected, the relevant spectra from each paper were extracted, processed, normalized. All data were then plotted without bias in order to decide whether there is a pattern that can shed light on a possible diagnostic classification. Remarkably, we have been able to demonstrate that cancerous breast tissues and cells decidedly exhibit overexpression of aromatic amino acids and that the difference between the extent of their presence in cancerous cells and healthy cells is overwhelming. On the basis of this analysis, we conclude that it is possible to use the signature Raman bands of aromatic amino acids as a biomarker for the detection, evaluation and diagnosis of breast cancer.