Wireless Sensor and actor networks (WSANs) are the most vital research area in the wireless communication field. It consists of sensors, actors, and the base station, where actor nodes work as these networks' spine. The network's main objective is to sense the critical information from the area of interest and then send it to the base station. After that, it can make accurate decisions. This project proposes an Energy-Efficient Routing Mechanism (EERM) technique for the effective routing process. It works in three phases, which are Network initialization, data gathering, and routing. Once the node senses the data and tries to forward it to the base station, it chooses the sensor/ actor nodes from its neighbors having more energy and less distance towards the base station, a final node. As a result, there are significantly fewer chances of data loss due to battery depletion. Moreover, it confirms that there is no data duplication. After successful data transmission, the node will be set as in sleeping mode to save energy. EERM evaluates with other gossiping routing techniques like FELGossiping, ELGossiping, and LGossiping. It notices that there is less data packet loss in it. More nodes are alive in additional iterations due to energy-efficient solutions, which increases the network lifetime.