A reasonably accurate, low-cost system for the monitoring of strains in simple physical models within the field of Structural Engineering, based on Internet of Things, is presented, calibrated and discussed. The system only requires average, economic devices as Arduino microcontroller and strain gauges. Several tests on a case study of a scaled-cantilevered aluminium beam with different loading are conducted. Governing parameters are calibrated aimed at an optimization when benchmarked against theoretical and experimental results obtained with a reference device. Results show great accuracy; however, the need of setting of the parameters campaign-by-campaign, especially aimed at dealing with thermal drift, becomes a shortcoming. Still, its minimum cost and user-friendly management makes it a suitable solution for different applications.