Magnetite, Fe$_3$O$_4$, is the first magnetic material discovered and
utilized by mankind in Ancient Greece, yet it still attracts attention due to
its puzzling properties. This is largely due to the quest for a full and
coherent understanding of the Verwey transition that occurs at $T_V=124$ K and
is associated with a drop of electric conductivity and a complex structural
phase transition. A recent detailed analysis of the structure, based on single
crystal diffraction, suggests that the electron localization pattern contains
linear three-Fe-site units, the so-called trimerons. Here we show that whatever
the electron localization pattern is, it partially survives up to room
temperature as short-range correlations in the high-temperature cubic phase,
easily discernible by diffuse scattering. Additionally, {\it ab initio}
electronic structure calculations reveal that characteristic features in these
diffuse scattering patterns can be correlated with the Fermi surface topology.Comment: 7 pages, 6 figure