This work presents a method used for designing a broadband class-E power amplifier that combines the two techniques of a nonlinear shunt capacitance and a low quality factor of a series resonator. The nonlinear shunt capacitance theory accurately extracts the value of class-E components. In addition, the quality factor of the series resonator was considered to obtain a wide bandwidth for the power amplifiers. The purpose of using this method was to produce a simple topology and a high efficiency, which are two outstanding features of a class-E power amplifier. The experimental results show that a design was created using from a 130 to 180 MHz frequency with a bandwidth of 32% and a peak measured power added efficiency of 84.8%. This prototype uses an MRF282SR1 MOSFET transistor at a 3-W output power level. Furthermore, a summary of the experimental results compared with other high-efficiency articles is provided to validate the advantages of this method.Key Words: Broadband, Class-E Amplifier, High PAE, Nonlinear Capacitance. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ⓒ