Stem cutting is the main process of broccoli harvesting, and the structure and mechanical properties of the stem significantly affect the cutting efficiency. In the current research, the structural characteristics and component contents of the broccoli stem are analyzed. Through different processing methods of stretching, compressing and bending, the aim is to obtain the parameters for mechanical properties of broccoli stem, and to provide basic data and reference for establishing visual models of broccoli stem. The test results show: The content of rind is highest in the middle of the stem, the content of xylem is highest in the bottom of the stem, and the content of pith is highest in the top of the stem. The densities of rind, xylem and pith of broccoli stem were 1056.1, 938.9 and 1009.9 kg·m−3, respectively. The elastic modulus of the rind of broccoli stem was 27.2~47.5 MPa, the elastic modulus of the xylem was 19.2~110.7 MPa, and the elastic modulus of the pith was 6.5~7.5 MPa. The compressive elastic modulus of the stem was 1.3~2 MPa. The bending strength of the broccoli stem was 6.9 MPa, and the bending modulus was 3.1 MPa. The mechanical model of broccoli stem established in this study provides a theoretical basis for cutting and other processes.