This study examined three main possible effects (impact, storage temperature, and duration) that cause and extend the level of bruising and other quality attributes contributing to the deterioration of tomatoes. The impact threshold level required to cause bruising was conducted by subjecting tomato samples to a steel ball with a known mass from different drop heights (20, 40, and 60 cm). The samples were then divided and stored at 10 and 22 °C for 10 days for the further analysis of bruise area and any physiological, chemical, and nutritional changes at two day intervals. Six prediction models were constructed for the bruised area and other quality attribute changes of the tomato. Storage time, bruise area, weight loss, redness, total color change, color index, total soluble solids, and pigments content (lycopene and carotenoids) showed a significant (p < 0.05) increase with the increase of drop height (impact level) and storage temperature. After 10 days of storage, high drop impact and storage at 22 °C generated a higher reduction in firmness, lightness, yellowness, and hue° (color purity). Additionally, regression model findings showed the significant effect of storage duration, storage temperature, and drop height on the measured variables (bruise area, weight loss, firmness, redness, total soluble solids, and lycopene) at a 5% probability level with a determination coefficient (R2) ranging from 0.76 to 0.95. Bruising and other quality attributes could be reduced by reducing the temperature during storage. This study can help tomato transporters, handlers, and suppliers to understand the mechanism of bruising occurrence and how to reduce it.