2020
DOI: 10.3390/app10238569
|View full text |Cite
|
Sign up to set email alerts
|

Buffer Allocation via Bottleneck-Based Variable Neighborhood Search

Abstract: This study addresses the challenging problem of efficient buffer allocation in production lines. Suitable locations for buffer allocation are determined to satisfy the desired throughput, while a suitable balance between solution quality and computation time is achieved. A throughput calculation approach that yields the state probability of production lines is adopted to evaluate the effectiveness of candidate buffer allocation solutions. To generate candidate buffer allocation solutions, an active probability… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 30 publications
0
2
0
Order By: Relevance
“…The most common optimization criteria consider maximizing the average throughput rate (Gao, 2022;Gao, Higashi, Kobayashi, Taneda, Rubrico & Ota, 2020;Gao & Liu, 2023;Kassoul, Cheikhrouhou & Zufferey, 2023;Köse, Demir, Tunal & Eliiyi, 2015;Kose & Kilincci, 2015;Koyuncuoğlu & Demir, 2021;Lin & Chiu, 2018;Nahas, Nourelfath & Gendreau, 2014;Narasimhamu, Reddy & Rao, 2014;Patchong & Kerbache, 2017;Wang, Song, Shin & Moon, 2014), minimizing the total buffer size (Li, 2013;Weiss & Stolletz, 2015), minimizing the total cost of allocation (Magnanini, Terkaj & Tolio, 2022;Nahas, 2017;Nahas & Nourelfath, 2018;Ouzineb, Mhada, Pellerin & El Hallaoui, 2018;Tiacci, 2022), among others (Alfieri, Matta & Pastore, 2020;Hernández-Vázquez, Hernández-González, Jiménez-García, Hernández-Ripalda & Hernández-Vázquez, 2019;Hernández-Vázquez, Hernández-González, Hernández-Vázquez, Figueroa-Fernández & Cancino de la Fuente, 2022b;Koyuncuoğlu & Demir, 2023;Shaaban & Romero-Silva, 2021;Shao, Moroni, Li, & Xu, 2022;Xi, Smith, Chen, Mao, Zhang & Yu, 2021;Zhou, Liu, Yu & Tao, 2018).…”
Section: Buffer Allocation Problemmentioning
confidence: 99%
“…The most common optimization criteria consider maximizing the average throughput rate (Gao, 2022;Gao, Higashi, Kobayashi, Taneda, Rubrico & Ota, 2020;Gao & Liu, 2023;Kassoul, Cheikhrouhou & Zufferey, 2023;Köse, Demir, Tunal & Eliiyi, 2015;Kose & Kilincci, 2015;Koyuncuoğlu & Demir, 2021;Lin & Chiu, 2018;Nahas, Nourelfath & Gendreau, 2014;Narasimhamu, Reddy & Rao, 2014;Patchong & Kerbache, 2017;Wang, Song, Shin & Moon, 2014), minimizing the total buffer size (Li, 2013;Weiss & Stolletz, 2015), minimizing the total cost of allocation (Magnanini, Terkaj & Tolio, 2022;Nahas, 2017;Nahas & Nourelfath, 2018;Ouzineb, Mhada, Pellerin & El Hallaoui, 2018;Tiacci, 2022), among others (Alfieri, Matta & Pastore, 2020;Hernández-Vázquez, Hernández-González, Jiménez-García, Hernández-Ripalda & Hernández-Vázquez, 2019;Hernández-Vázquez, Hernández-González, Hernández-Vázquez, Figueroa-Fernández & Cancino de la Fuente, 2022b;Koyuncuoğlu & Demir, 2023;Shaaban & Romero-Silva, 2021;Shao, Moroni, Li, & Xu, 2022;Xi, Smith, Chen, Mao, Zhang & Yu, 2021;Zhou, Liu, Yu & Tao, 2018).…”
Section: Buffer Allocation Problemmentioning
confidence: 99%
“…11,12 Search algorithms can obtain the near-optimal solution quickly by using guidance information to update the candidate solutions. 13,14 However, the effectiveness of the guidance information is difficult to determine, which directly affects solution quality. Metaheuristics are widely used to solve resource scheduling problems, such as MBAP.…”
Section: Introductionmentioning
confidence: 99%