We derive a low energy effective field theory for chiral superfluids, which accounts for both spontaneous symmetry breaking and fermionic ground-state topology. Using the theory, we show that the odd (or Hall) viscosity tensor, at small wave-vector, contains a dependence on the chiral central charge c of the boundary degrees of freedom, as well as additional non-universal contributions. We identify related bulk observables which allow for a bulk measurement of c. In Galilean invariant superfluids, only the particle current and density responses to strain and electromagnetic fields are required. To complement our results, the effective theory is benchmarked against a perturbative computation within a canonical microscopic model. < l a t e x i t s h a 1 _ b a s e 6 4 = " r L w / X U c T o a 2 Z e K G I 9 H 4 s i a p 2 4 C g = " > A A A B 6 n i c b V B N S w M x E J 2 t X 7 V + V T 1 6 C R b B U 9 k V Q b 0 V v X i s 4 N p C u 5 R s m m 1 D k 2 x I s k J Z + h e 8 e F D x 6 i / y 5 r 8 x 2 + 5 B q w 8 G H u / N M D M v V p w Z 6 / t f X m V l d W 1 9 o 7 p Z 2 9 r e 2 d 2 r 7 x 8 8 m D T T h I Y k 5 a n u x t h Q z i Q N L b O c d p W m W M S c d u L J T e F 3 H q k 2 L J X 3 d q p o J P B I s o Q R b A u p r w w b 1 B t + 0 5 8 D / S V B S R p Q o j 2 o f / a H K c k E l Z Z w b E w v 8 J W N c q w t I 5 z O a v 3 M U I X J B I 9 o z 1 G J B T V R P r 9 1 h k 6 c M k R J q l 1 J i + b q z 4 k c C 2 O m I n a d A t u x W f Y K 8 T + v l 9 n k M s q Z V J m l k i S w M x E J 2 t X 7 V + V T 1 6 C R b B U 9 k V Q b 0 V v X i s 4 N p C u 5 R s m m 1 D k 2 x I s k J Z + h e 8 e F D x 6 i / y 5 r 8 x 2 + 5 B q w 8 G H u / N M D M v V p w Z 6 / t f X m V l d W 1 9 o 7 p Z 2 9 r e 2 d 2 r 7 x 8 8 m D T T h I Y k 5 a n u x t h Q z i Q N L b O c d p W m W M S c d u L J T e F 3 H q k 2 L J X 3 d q p o J P B I s o Q R b A u p r w w b 1 B t + 0 5 8 D / S V B S R p Q o j 2 o f / a H K c k E l Z Z w b E w v 8 J W N c q w t I 5 z O a v 3 M U I X J B I 9 o z 1 G J B T V R P r 9 1 h k 6 c M k R J q l 1 J i + b q z 4 k c C 2 O m I n a d A t u x W f Y K 8 T + v l 9 n k M s q Z V J m l k i S w M x E J 2 t X 7 V + V T 1 6 C R b B U 9 k V Q b 0 V v X i s 4 N p C u 5 R s m m 1 D k 2 x I s k J Z + h e 8 e F D x 6 i / y 5 r 8 x 2 + 5 B q w 8 G H u / N M D M v V p w Z 6 / t f X m V l d W 1 9 o 7 p Z 2 9 r e 2 d 2 r 7 x 8 8 m D T T h I Y k 5 a n u x t h Q z i Q N L b O c d p W m W M S c d u L J T e F 3 H q k 2 L J X 3 d q p o J P B I s o Q R b A u p r w w b 1 B t + 0 5 8 D / S V B S R p Q o j 2 o f / a H K c k E l Z Z w b E w v 8 J W N c q w t I 5 z O a v 3 M U I X J B I 9 o z 1 G J B T V R P r 9 1 h k 6 c M k R J q l 1 J i + b q z 4 k c C 2 O m I n a d A t u x W f Y K 8 T + v l 9 n k M s q Z V J m l k i S w M x E J 2 t X 7 V + V T 1 6 C R b B U 9 k V Q b 0 V v X i s 4 N p C u 5 R s m m 1 D k 2 x I s k J Z + h e 8 e F D x 6 i / y 5 r 8 x 2 + 5 B q w 8 G H u / N M D M v V p w Z 6 / t f X m V l d W 1 9 o 7 p Z 2 9 r e 2 d 2 r 7 x 8 8 m D T T h I Y k 5 a n u x t h Q z i Q N L b O c d p W m W M S c d u L J T e F 3 H q k 2 L J X 3 d q p o J P B I ...