Abstract-The bulk current injection (BCI) and direct power injection (DPI) method have been established as the standards for the electromagnetic susceptibility (EMS) test. Because the BCI test uses a probe to inject magnetically coupled electromagnetic (EM) noise, there is a significant difference between the power supplied by the radio frequency (RF) generator and that transferred to the integrated circuit (IC). Thus, the immunity estimated by the forward power cannot show the susceptibility of the IC itself. This paper derives the real injected power at the failure point of the IC using the power transfer efficiency of the BCI method. We propose and mathematically derive the power transfer efficiency based on equivalent circuit models representing the BCI test setup. The BCI test is performed on I/O buffers with and without decoupling capacitors, and their immunities are evaluated based on the traditional forward power and the real injected power proposed in this work. The real injected power shows the actual noise power level that the IC can tolerate. Using the real injected power as an indicator for the EMS test, we show that the on-chip decoupling capacitor enhances the EM noise immunity.