This article gives a theoretical substantiation and a new experimental solution of a scientific problem aimed at increasing the effectiveness of pharmacotherapy on the morphofunctional state of the lungs of rats under conditions of burn shock by using a combined colloid-hyperosmolar infusion solution – lacto-protein with sorbitol. The administration of the test solution at a dose of 10 ml/kg for 7 days in rats with modelled burn shock reduced ultrastructural changes in the lungs triggered by burn shock. It has been proved that in the conditions of shock, colloid-hyperosmolar infusion lacto-protein with sorbitol solution facilitates the restoration of vascular endothelium and fluid retention in the microcirculatory channel and improves the morphofunctional state of the aerohematic barrier of the lungs, stimulates the activity of the alveolar macrophages and the secretory function of the type II alveolocytes producing surfactant. At day 7 of burn shock, when 0.9% of NaCl was injected, significant changes were observed in the respiratory unit: part of the alveoli had considerably enhanced clearance of blood capillaries, which had platelets, neutrophils and altered forms of erythrocytes. At day 7 of burn shock in the lungs of the rats given an infusion of colloid-hyperosmolar solution – lactoprotein with sorbitol, the ultrastructure of the components of the lung cells had improved in comparison with 3 days. Luminosity of the hemocapillary parts was moderate, mainly with erythrocytes. The walls of endothelial cells had elongated nuclei with invaginations of nuclear membranes and clear contours. Their cytoplasmic regions were not widespread, with moderate electron densities. In type II alveolocytes, during this experiment, a lower degree of damage to the nucleus and organelles in the cytoplasm was established, and there were signs of a renewal of the secretory function of these cells. In the cytoplasm, hypertrophied mitochondria with clear crystals, different sizes of secretory granules, which had a different density, indicating their formation, were observed. According to the magnitude of the cytoprotective effect on lung cells under conditions of burn shock, the lactoprotein with sorbitol solution was shown to be superior in comparison with the physical solution (0.9% NaCl). The study of functional, biochemical and molecular genetic parameters that characterize the state of the aerohematic barrier under the conditions of using lactoprotein with sorbitol solution in the case of burn injuries of the skin will allow researchers to comprehensively evaluate the mechanisms of the pulmonary protective effect of this preparation and to experimentally substantiate the expediency of its use in clinical practice for pharmaco-correction of burn shock.