This study aimed to evaluate the sequential hydrolysis of the biomass from unconventional and versatile Y. lipolytica to recover mannoproteins, carbohydrates, and other compounds as well as to determine the antioxidant activity of ultrafiltered fractions. The crude biomass underwent autolysis, and the resulting supernatant fraction was used for mannoprotein recovery via precipitation with ethanol. The precipitate obtained after autolysis underwent acid hydrolysis, and the resulting supernatant was ultrafiltered, precipitated, and characterized. The process yields were 55.5% and 46.14% for the crude biomass grown in glucose and glycerol, respectively. The mannoprotein with higher carbohydrate content (from crude biomass grown in glycerol) exhibited a higher emulsification index of 47.35% and thermal stability (60% weight loss). In contrast, the mannoprotein with higher protein content (from crude biomass grown in glucose) showed a better surface tension reduction of 44.50 mN/m. The technological properties showed that the crude biomass and the food ingredients are feasible to apply in food processing. The fractionation of the acid hydrolysis portion allowed the evaluation of the antioxidant power synergism among the components present in the hydrolysate, mostly the protein peptide chain. The sequential hydrolysis method is viable for extracting valuable products from Y. lipolytica.