Butterfly wing color patterns are developmentally determined by morphogenic signals from organizers in the early pupal stage. However, the precise mechanism of color-pattern determination remains elusive. Here, mechanical and surface disturbances were applied to the pupal hindwing of the peacock pansy butterfly Junonia almana (Linnaeus, 1758) to examine their effects on color-pattern determination. Using the forewing-lift method immediately after pupation, a small stainless ball was placed on the prospective major eyespot or background of the developing dorsal hindwing to cause a wing epithelial distortion, resulting in deformation of the major eyespot. When the exposed dorsal hindwing was covered with a piece of plastic film or placed on a surface of a glass slide, an adhesive tape, or a silicone-coated glassine paper, the major eyespot was effectively reduced in size without a direct contact with the covering materials. The latter two treatments additionally induced the size reduction of the minor eyespot and proximal displacement and broadening of parafocal elements through a direct contact, being reminiscent of the temperatureshock-type modifications. These results suggest the importance of mechanical force and physicochemical properties of planar epithelial contact surface (i.e., extracellular matrix) to propagate morphogenic signals for color-pattern determination in butterfly wings.