BackgroundLong-term monitoring of the biological impacts of the radioactive pollution caused by the Fukushima nuclear accident in March 2011 is required to understand what has occurred in organisms living in the polluted areas. Here, we investigated spatial and temporal changes of the abnormality rate (AR) in both field-caught adult populations and laboratory-reared offspring populations of the pale grass blue butterfly, Zizeeria maha, which has generation time of approximately one month. We monitored 7 localities (Fukushima, Motomiya, Hirono, Iwaki, Takahagi, Mito, and Tsukuba) every spring and fall over 3 years (2011–2013).ResultsThe adult ARs of these localities quickly increased and peaked in the fall of 2011, which was not observed in non-contaminated localities. In the offspring generation, the total ARs, which include deaths at the larval, prepupal, and pupal stages and morphological abnormalities at the adult stage, peaked either in the fall of 2011 or in the spring of 2012, with much higher levels than those of the parent field populations, suggesting that high incidence of deaths and abnormalities might have occurred in the field populations. Importantly, the elevated ARs of the field and offspring populations settled back to a normal level by the fall of 2012 and by the spring of 2013, respectively. Similar results were obtained not only in the spatiotemporal dynamics of the number of individuals caught per minute but also in the temporal dynamics of the correlation coefficient between the adult abnormality rate and the ground radiation dose or the distance from the Power Plant.ConclusionsThese results demonstrated an occurrence and an accumulation of adverse physiological and genetic effects in early generations, followed by their decrease and leveling off at a normal level, providing the most comprehensive record of biological dynamics after a nuclear accident available today. This study also indicates the importance of considering generation time and adaptive evolution in evaluating the biological impacts of artificial pollution in wild organisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0297-1) contains supplementary material, which is available to authorized users.
Butterfly wing eyespot patterns are determined in pupal tissues by organisers located at the centre of the prospective eyespots. Nevertheless, organiser cells have not been examined cytochemically in vivo, partly due to technical difficulties. Here, we directly observed organiser cells in pupal forewing epithelium via an in vivo confocal fluorescent imaging technique, using 1-h post-pupation pupae of the blue pansy butterfly, Junonia orithya. The prospective eyespot centre was indented from the plane of the ventral tissue surface. Three-dimensional reconstruction images revealed that the apical portion of “focal cells” at the bottom of the eyespot indentation contained many mitochondria. The mitochondrial portion was connected with a “cell body” containing a nucleus. Most focal cells had globular nuclei and were vertically elongated, but cells in the wing basal region had flattened nuclei and were tilted toward the distal direction. Epithelial cells in any wing region had cytoneme-like horizontal processes. From 1 h to 10 h post-pupation, nuclear volume increased, suggesting DNA synthesis during this period. Morphological differences among cells in different regions may suggest that organiser cells are developmentally ahead of cells in other regions and that position-dependent heterochronic development is a general mechanism for constructing colour patterns in butterfly wings.
BackgroundThe border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties.ResultsHere, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system.ConclusionsThese results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
Eyespot color patterns in butterfly wings are determined by the putative morphogenic signals from organizers. Previous experiments using physical damage to the forewing eyespots of the peacock pansy butterfly, Junonia almana (Linnaeus, 1758), suggested that the morphogenic signals dynamically interact with each other, involving enhancement of activation signals and interactions between activation and inhibitory signals. Here, we focused on the large double-focus fusion eyespot on the hindwing of J. almana to test the involvement of the proposed signal interactions. Early damage at a single focus of the prospective double-focus eyespot produced a smaller but circular eyespot, suggesting the existence of synergistic interactions between the signals from two sources. Late damage at a single focus reduced the size of the inner core disk but simultaneously enlarged the outermost black ring. Damage at two nearby sites in the background induced an extensive black area, possibly as a result of the synergistic enhancement of the two induced signals. These results confirmed the previous forewing results and provided further evidence for the long-range and synergistic interactive nature of the morphogenic signals that may be explained by a reaction-diffusion mechanism as a part of the induction model for color-pattern formation in butterfly wings.
The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.