Given the current global water scarcity issues, which particularly affect arid regions such as northwestern China, it is crucial to find crop planting patterns that result in efficient water resource utilization. Quinoa, as a drought-resistant and highly nutritious crop, has garnered significant attention from agricultural researchers in recent years. From 2019 to 2020, a series of experimental studies were conducted under non-mulching drip irrigation conditions to investigate the growth adaptability and the response to different irrigation levels of quinoa in an arid region in northwestern China. A comparative analysis of quinoa’s dry matter accumulation, yield, thousand-grain weight, harvest index, and water use efficiency under varying irrigation levels revealed that increasing irrigation significantly enhanced quinoa’s dry matter accumulation and yield. By optimizing the irrigation strategies, we found that the water-saving practice of initiating moderate irrigation in the sensitive water-demanding stages (flowering and fruiting) of quinoa increased the yield. The experiment results showed that, in 2020, the optimal irrigation amount was 3675 m3·ha−1 during a 14-day irrigation cycle, meeting quinoa’s growth requirements while improving water resource utilization efficiency. This study not only provides a scientific basis for the efficient cultivation of quinoa in the arid regions of northwestern China, but also offers new insights into and technical support for agricultural water resource management in the region, contributing to the sustainable development of agriculture in arid areas.