The Bitcoin cryptocurrency is a worldwide prevalent virtualized digital currency conceptualized in 2008 as a distributed transactions system. Bitcoin transactions make use of peer-to-peer network nodes without a third-party intermediary, and the transactions can be verified by the node. Although Bitcoin networks have exhibited high efficiency in the financial transaction systems, their payment transactions are vulnerable to several ransomware attacks. For that reason, investigators have been working on developing ransomware payment identification techniques for bitcoin transactions’ networks to prevent such harmful cyberattacks. In this paper, we propose a high performance Bitcoin transaction predictive system that investigates the Bitcoin payment transactions to learn data patterns that can recognize and classify ransomware payments for heterogeneous bitcoin networks. Specifically, our system makes use of two supervised machine learning methods to learn the distinguishing patterns in Bitcoin payment transactions, namely, shallow neural networks (SNN) and optimizable decision trees (ODT). To validate the effectiveness of our solution approach, we evaluate our machine learning based predictive models on a recent Bitcoin transactions dataset in terms of classification accuracy as a key performance indicator and other key evaluation metrics such as the confusion matrix, positive predictive value, true positive rate, and the corresponding prediction errors. As a result, our superlative experimental result was registered to the model-based decision trees scoring 99.9% and 99.4% classification detection (two-class classifier) and accuracy (multiclass classifier), respectively. Hence, the obtained model accuracy results are superior as they surpassed many state-of-the-art models developed to identify ransomware payments in bitcoin transactions.