Aberrant activation of mammalian target of rapamycin (mTOR) plays pivotal roles in promoting hepatocellular carcinoma (HCC) tumorigenesis and chemoresistance. Here, we tested the potential anti-HCC activity by a novel mTOR complex 1/2 (mTORC1/2) dual inhibitor AZD-8055 and, more importantly, the potential AZD-8055 sensitization effect by a cell-permeable short-chain ceramide (C6). We showed that AZD-8055 mainly exerted moderate cytotoxic effect against a panel of HCC cell lines (HepG2, Hep3B, and SMMC-7721). Co-treatment of C6 ceramide remarkably augmented AZD-8055-induced HCC cytotoxicity. Meanwhile, C6 ceramide dramatically potentiated AZD-8055-induced HCC cell apoptotic death. Further studies demonstrated that AZD-8055 and C6 ceramide synergistically induced anti-survival and pro-apoptotic activity in primary cultured human HCC cells, but not in the non-cancerous human hepatocytes. Signaling studies showed that AZD-8055 and C6 ceramide synergistically suppressed Akt-mTOR complex 1/2 cascade activation. In vivo, AZD-8055 oral administration suppressed HepG2 hepatoma xenograft growth in nude mice, while moderately improving mice survival. Its anti-tumor activity was dramatically potentiated with co-administration of a liposome-packed C6 ceramide. Together, these results demonstrate that concurrent targeting mTORC1/2 by AZD-8055 exerts anti-tumor ability in preclinical HCC models, and its activity is further sensitized with co-administration of C6 ceramide.