Protein phosphorylation and dephosphorylation govern intracellular signal transduction and cellular functions. Kinases and phosphatases are involved in the regulation and development of many diseases such as Alzheimer’s, diabetes, and cancer. While the functions and roles of many kinases, as well as their substrates, are well understood, phosphatases are comparatively less well studied. Recent studies have shown that rather than acting on fewer and more distinct substrates like the kinases, phosphatases can recognize specific phosphorylation sites on many different proteins, making the study of phosphatases and their substrates challenging. One approach to understand the biological functions of phosphatases is through understanding their protein–protein interaction network. POPX2 (Partner of PIX 2; also known as PPM1F or CaMKP) is a serine/threonine phosphatase that belongs to the PP2C family. It has been implicated in cancer cell motility and invasiveness. This review aims to summarize the different binding partners of POPX2 phosphatase and explore the various functions of POPX2 through its interactome in the cell. In particular, we focus on the impact of POPX2 on cancer progression. Acting via its different substrates and interacting proteins, POPX2’s involvement in metastasis is multifaceted and varied according to the stages of metastasis.