Energy saving in robotic and mechatronic systems is becoming an evermore important topic in both industry and academia. One strategy to reduce the energy consumption, especially for cyclic tasks, is exploiting natural motion. We define natural motion as the system response caused by the conversion of potential elastic energy into kinetic energy. This motion can be both a forced response assisted by a motor or a free response. The application of the natural motion concepts allows for energy saving in tasks characterized by repetitive or cyclic motion. This review paper proposes a classification of several approaches to natural motion, starting from the compliant elements and the actuators needed for its implementation. Then several approaches to natural motion are discussed based on the trajectory followed by the system, providing useful information to the researchers dealing with natural motion.