Body schema, a sensorimotor representation of the body used for planning and executing movements, is plastic because it extends by using a tool to reach far objects. Modifications of peripersonal space, i.e., a functional representation of reach space, usually co-occur with body schema changes. Here, we hypothesized that such plastic changes depend on the experience of controlling the course of events in space trough one’s own actions, i.e., the sense of agency. In two experiments, body schema and peripersonal space were assessed before and after the participants’ sense of agency over a virtual hand was manipulated. Body schema and peripersonal space enlarged or contracted depending on whether the virtual hand was presented in far space, or closer to the participants’ body than the real hand. These findings suggest that body schema and peripersonal space are affected by the dynamic mapping between intentional body movements and expected consequences in space.
Morphology together with the capability to respond to surrounding stimuli are key elements governing the spatial interaction of living cells with the environment. In this respect, biomechanical stimulation can trigger significant physiological cascades that can potentially modulate toxicity. Deoxynivalenol (DON, vomitoxin) is one of the most prevalent mycotoxins produced by Fusarium spp. and it was used to explore the delicate interaction between biomechanical stimulation and cytotoxicity in A431 cells. In fact, in addition of being a food contaminant, DON is a relevant toxin for several organ systems. The combination between biomechanical stimulation and the mycotoxin revealed how DON can impair crucial functions affecting cellular morphology, tubulin and lysosomes at concentrations even below those known to be cytotoxic in routine toxicity studies. Sub-toxic concentrations of DON (0.1–1 μM) impaired the capability of A431 cells to respond to a biomechanical stimulation that normally sustains trophic effects in these cells. Moreover, the effects of DON (0.1–10 μM) were partially modulated by the application of uniaxial stretching (0.5 Hz, 24 h, 15% deformation). Ultimately, proteomic analysis revealed the potential of DON to alter several proteins necessary for cell adhesion and cytoskeletal modulation suggesting a molecular link between biomechanics and the cytotoxic potential of the mycotoxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.