A large class of entity extraction tasks from text that is either semistructured or fully unstructured may be addressed by regular expressions, because in many practical cases the relevant entities follow an underlying syntactical pattern and this pattern may be described by a regular expression. In this work we consider the long-standing problem of synthesizing such expressions automatically, based solely on examples of the desired behavior. We present the design and implementation of a system capable of addressing extraction tasks of realistic complexity. Our system is based on an evolutionary procedure carefully tailored to the specific needs of regular expression generation by examples. The procedure executes a search driven by a multiobjective optimization strategy aimed at simultaneously improving multiple performance indexes of candidate solutions while at the same time ensuring an adequate exploration of the huge solution space. We assess our proposal experimentally in great depth, on a number of challenging datasets. The accuracy of the obtained solutions seems to be adequate for practical usage and improves over earlier proposals significantly. Most importantly, our results are highly competitive even with respect to human operators. A prototype is available as a web application at http://regex.inginf.units.it
Abstract-With the wide diffusion of smartphones and their usage in a plethora of processes and activities, these devices have been handling an increasing variety of sensitive resources. Attackers are hence producing a large number of malware applications for Android (the most spread mobile platform), often by slightly modifying existing applications, which results in malware being organized in families.Some works in the literature showed that opcodes are informative for detecting malware, not only in the Android platform. In this paper, we investigate if frequencies of ngrams of opcodes are effective in detecting Android malware and if there is some significant malware family for which they are more or less effective. To this end, we designed a method based on state-of-the-art classifiers applied to frequencies of opcodes ngrams. Then, we experimentally evaluated it on a recent dataset composed of 11120 applications, 5560 of which are malware belonging to several different families.Results show that an accuracy of 97% can be obtained on the average, whereas perfect detection rate is achieved for more than one malware family.
The increasing diffusion of smart devices, along with the dynamism of the mobile applications ecosystem, are boosting the production of malware for the Android platform. So far, many different methods have been developed for detecting Android malware, based on either static or dynamic analysis. The main limitations of existing methods include: low accuracy, proneness to evasion techniques, and weak validation, often limited to emulators or modified kernels. We propose an Android malware detection method, based on sequences of system calls, that overcomes these limitations. The assumption is that malicious behaviors (e.g., sending high premium rate SMS, cyphering data for ransom, botnet capabilities, and so on) are implemented by specific system calls sequences: yet, no apriori knowledge is available about which sequences are associated with which malicious behaviors, in particular in the mobile applications ecosystem where new malware and non-malware applications continuously arise. Hence, we use Machine Learning to automatically learn these associations (a sort of "fingerprint" of the malware); then we exploit them to actually detect malware. Experimentation on 20000 execution traces of 2000 applications (1000 of them being malware belonging to different malware families), performed on a real device, shows promising results: we obtain a detection accuracy of 97%. Moreover, we show that the proposed method can cope with the dynamism of the mobile apps ecosystem, since it can detect unknown malware
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.