Converging evidence from candidate gene, genome-wide linkage, and association studies support a role of cadherins in the pathophysiology of five major psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). These molecules are transmembrane proteins which act as cell adhesives by forming adherens junctions (AJs) to bind cells within tissues. Members of the cadherin superfamily are also involved in biological processes such as signal transduction and plasticity that have been implicated in the etiology of major psychiatric conditions. Although there are over 110 genes mapped to the cadherin superfamily, our literature survey showed that evidence of association with psychiatric disorders is strongest for CDH7, CHD11, and CDH13. Gene enrichment analysis showed that those cadherin genes implicated in psychiatric disorders were overrepresented in biological processes such as in cell-cell adhesion (GO:0007156 & GO:0098742) and adherens junction organization (GO:0034332). Further, cadherin genes were also mapped to processes that have been linked to the development of psychiatric disorders such as nervous system development (GO:0007399). To further understand the role of cadherin SNPs implicated in psychiatric disorders, we utilized an in silico computational pipeline to functionally annotate associated variants. This analysis yielded eight variants mapped to PCDH1-13, CDH7, CDH11, and CDH13 that are predicted to be biologically functional. Functional genomic evaluation is now required to understand the molecular mechanism by which these variants might confer susceptibility to psychiatric disorders.