Neste artigo estamos apresentando a síntese do composto [Cd 8 Cl 2 (µ 4 -Se) (SePh) 12 (PCy 3 ) 2 ]·2.5CH 3 OH pela reação de Cd(SePh) 2 com CdCl 2 e triciclohexilfosfina em metanol em um reator de aço inoxidável sob condições solvotérmicas a 130 °C. Esse composto corresponde ao último resultado de uma série sistemática de reações e visando ao crescimento de clusters moleculares a partir de Cd(SePh) 2 como reagente de partida. A importância desta síntese não está baseada somente nas propriedades do produto preparado, mas também no seu possível uso, por exemplo, no desenvolvimento de novas metodologias via estratégias "bottom up" para a obtenção de clusters a partir de uma mesma classe de reagentes -M(ER) 2 (M = metal, E = calcogênio, R = alquil ou aril). O composto apresentado neste artigo foi caracterizado por difração de raios X em monocristal, análise elementar, análise termogravimétrica e espectroscopia no UV-Vis. Estes últimos resultados foram correlacionados com dados calculados por DFT, teoria do funcional de densidade.In this article we present the synthesis of the compound [Cd 8 Cl 2 Se(SePh) 12 (PCy 3 ) 2 ]·2.5CH 3 OH by the reaction of Cd(SePh) 2 with CdCl 2 and PCy 3 in methanol in a stainless steel sealed reactor under solvothermal conditions at 130 °C. This compound represents the latest result of our systematic work on the growth of molecular clusters from Cd(SePh) 2 as starting material. Their importance is based not only on the properties of the new compounds, but also by their possible use, for example, in the development of new methods via a ''bottom up" strategy to obtain different clusters from single components like M(ER) 2 (M = metal, E = chalcogen, R = alkyl or aryl). The title compound was characterized by single crystal X-ray diffractometry, elemental analysis, thermogravimetrical analysis and the UV-Vis spectroscopy. These results were correlated with data calculated by DFT, density functional theory.
Keywords: cadmium(II) complexes, selenium, tellurium, clusters
IntroductionOrganylchalcogen groups bound to metal atoms to generate nanoclusters have become increasingly important due to their potential as semiconductors, among other materials and biological applications. [1][2][3][4] The unique optical and electronic properties inherent to these "quantumconfined particles" (quantum-dots) have been attributed to modifications of the electronic structure -depending upon the particle size -which lead to very different structures than those found in molecular solids or bulk materials. [5][6][7] Our search for new metalchalcogen-containing building blocks is of great interest for many reasons, principally because the variable size of the blocks produces tunable optoeletronic properties of the bulk products, [8][9][10] This emerging field -super lattices of crystalline chalcogenideslinks two traditional, but distinct, areas of research: chalcogenide clusters and reticular materials. [11][12][13][14][15][16][17][18][19] Some authors have proposed alternative ways for the development of metal-...