A main challenge in the large-scale application of the microbially induced carbonate precipitation (MICP) technique includes the low efficiency of the cementation of coarse grains. Actually, in the MICP treatment process, the cementation effect of the bonding points was more important than pore filling due to the large porosity for coarse grains. To achieve a better cementation effect at bonding points between coarse particles, the quick formation and growth of a biofilm is necessary. In this study, an optimized medium was proposed to improve the cementation effects for coarse materials. The optimized medium and other different media were used for bio-cementation tests with MICP. The viable cell concentrations, strengths, microscopic characteristics, biofilm contents, and calcium carbonate (CaCO3) contents were used to evaluate the bio-cementation and its effects. In bio-cementation tests, the optimized medium led to increased CaCO3 precipitation at the bonding points and better cementation effects compared to other media. Indeed, the strength of the sample treated with the optimized medium was more than 1.2–4 times higher that of the values for other media. The advantages of the optimized medium were demonstrated via bio-cementation tests.