2019
DOI: 10.1186/s13058-019-1185-1
|View full text |Cite
|
Sign up to set email alerts
|

Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis

Abstract: Background Stromal interaction molecule (STIM) 2 is a key calcium-sensing molecule that regulates the stabilization of calcium ions (Ca 2+ ) and therefore regulates downstream Ca 2+ -associated signaling and cellular events. We hypothesized that STIM2 regulates epithelial-mesenchymal transition (EMT) to promote breast cancer metastasis. Methods We determined the effects of gain, loss, and rescue of STIM2 on cellular … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
19
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 21 publications
(20 citation statements)
references
References 54 publications
0
19
0
1
Order By: Relevance
“…It is useful to organize the data in this way as an attempt to more comprehensively understand the detailed mechanisms underlying cancer-mediated changes in calcium signaling (from receptor/channel to calcium signaling to cell function), the advantages these alterations confer to cancer, and the best approaches for designing new calcium-focused therapies. High expression levels of calcium channels, calcium pumps, and GPCRs (Table 1; protein or mRNA measurements) have been reported in patient breast cancer tissues over normal tissue (STIM1/2 (Miao et al 2019), ORAI3 (Faouzi et al 2011), SPCA2 pumps (Feng et al 2010), P2X7 channels (Tan et al 2015), TRPA1/TRPC1/ TRPC3/TRPC6/TRPC7/TRPV6/TRPM7/TRPM8 channels (Aydar et al 2009;Bolanz et al 2008;Chodon et al 2010;Dhennin-Duthille et al 2011;Guilbert et al 2008Guilbert et al , 2009Liu et al 2014;Meng et al 2013;Takahashi et al 2018;Tsavaler et al 2001), IP 3 Rs2/3 (Singh et al 2017b), S100 proteins (Cross et al 2005)) and high expression is correlated with breast tumor grade (RYRs (Abdul et al 2008), TRPV6 channels (Dhennin-Duthille et al 2011;Peters et al 2012), TRPM8 channels (Yapa et al 2018), TRPV4 channels (Peters et al 2017), SPCA1 pumps (Grice et al 2010), ORAI1 (McAndrew et al 2011, P 2 Y6 GPCRs , PMCA2 pumps (Peters et al 2016;VanHouten et al 2010), mitochondrial calcium uniporter (MCU) (Curry et al 2013), S100 proteins (McKiernan et al 2011)). Cancer patient samples over normal samples have also shown increased expression of CREB1/2 (Chhabra et al 2007;Fan et al 2012;Sofi et al 2003), PKCζ (Paul et al 2015;Smalley et al 2019)...…”
Section: Calcium Signaling and Cancermentioning
confidence: 99%
See 4 more Smart Citations
“…It is useful to organize the data in this way as an attempt to more comprehensively understand the detailed mechanisms underlying cancer-mediated changes in calcium signaling (from receptor/channel to calcium signaling to cell function), the advantages these alterations confer to cancer, and the best approaches for designing new calcium-focused therapies. High expression levels of calcium channels, calcium pumps, and GPCRs (Table 1; protein or mRNA measurements) have been reported in patient breast cancer tissues over normal tissue (STIM1/2 (Miao et al 2019), ORAI3 (Faouzi et al 2011), SPCA2 pumps (Feng et al 2010), P2X7 channels (Tan et al 2015), TRPA1/TRPC1/ TRPC3/TRPC6/TRPC7/TRPV6/TRPM7/TRPM8 channels (Aydar et al 2009;Bolanz et al 2008;Chodon et al 2010;Dhennin-Duthille et al 2011;Guilbert et al 2008Guilbert et al , 2009Liu et al 2014;Meng et al 2013;Takahashi et al 2018;Tsavaler et al 2001), IP 3 Rs2/3 (Singh et al 2017b), S100 proteins (Cross et al 2005)) and high expression is correlated with breast tumor grade (RYRs (Abdul et al 2008), TRPV6 channels (Dhennin-Duthille et al 2011;Peters et al 2012), TRPM8 channels (Yapa et al 2018), TRPV4 channels (Peters et al 2017), SPCA1 pumps (Grice et al 2010), ORAI1 (McAndrew et al 2011, P 2 Y6 GPCRs , PMCA2 pumps (Peters et al 2016;VanHouten et al 2010), mitochondrial calcium uniporter (MCU) (Curry et al 2013), S100 proteins (McKiernan et al 2011)). Cancer patient samples over normal samples have also shown increased expression of CREB1/2 (Chhabra et al 2007;Fan et al 2012;Sofi et al 2003), PKCζ (Paul et al 2015;Smalley et al 2019)...…”
Section: Calcium Signaling and Cancermentioning
confidence: 99%
“…High expression levels of calcium channels, calcium pumps, and GPCRs (Table 1 ; protein or mRNA measurements) have been reported in patient breast cancer tissues over normal tissue (STIM1/2 (Miao et al 2019 ), ORAI3 (Faouzi et al 2011 ), SPCA2 pumps (Feng et al 2010 ), P2X7 channels (Tan et al 2015 ), TRPA1/TRPC1/TRPC3/TRPC6/TRPC7/TRPV6/TRPM7/TRPM8 channels (Aydar et al 2009 ; Bolanz et al 2008 ; Chodon et al 2010 ; Dhennin-Duthille et al 2011 ; Guilbert et al 2008 , 2009 ; Liu et al 2014 ; Meng et al 2013 ; Takahashi et al 2018 ; Tsavaler et al 2001 ), IP 3 Rs2/3 (Singh et al 2017b ), S100 proteins (Cross et al 2005 )) and high expression is correlated with breast tumor grade (RYRs (Abdul et al 2008 ), TRPV6 channels (Dhennin-Duthille et al 2011 ; Peters et al 2012 ), TRPM8 channels (Yapa et al 2018 ), TRPV4 channels (Peters et al 2017 ), SPCA1 pumps (Grice et al 2010 ), ORAI1 (McAndrew et al 2011 ), P 2 Y6 GPCRs (Azimi et al 2016 ), PMCA2 pumps (Peters et al 2016 ; VanHouten et al 2010 ), mitochondrial calcium uniporter (MCU) (Curry et al 2013 ), S100 proteins (McKiernan et al 2011 )). Cancer patient samples over normal samples have also shown increased expression of CREB1/2 (Chhabra et al 2007 ; Fan et al 2012 ; Sofi et al 2003 ), PKCζ (Paul et al 2015 ; Smalley et al 2019 ), and CAMKII (Chi et al 2016 ), increased nuclear localization of NFAT2 (Quang et al 2015 ), and increased phosphorylation of PKCζ (Paul et al 2015 ), CAMKII (Chi et al 2016 ), and CREB2 (Fan et al 2012 ).…”
Section: Calcium Signaling and Cancermentioning
confidence: 99%
See 3 more Smart Citations