Calcium (Ca) is an essential element constituting sedimentary carbonate in subducting sediments. Ca isotopic characteristics of subduction-related rocks could provide insight into the behavior and budget of carbonate and carbon cycles in subduction zones, due to the distinctive δ44/40Ca ranges of sedimentary carbonate with respect to the mantle. Here, we studied the Ca isotopic compositions of arc magmas from the Northern Luzon arc (NLA), which are evolved from a depleted mantle metasomatized by slab-derived fluids and sediment melts. The δ44/40Ca values range from 0.76 ± 0.04‰ to 1.01 ± 0.03‰ and cover the typical ranges for bulk silica earth (BSE, ~ 0.94‰) and fresh mid-ocean ridge basalt (MORB, ~ 0.83‰). The Ca isotopes of NLA volcanics are not dominantly determined by the effects of mantle partial melting or fractional crystallization, nor significantly modified by secondary alteration. Instead, the δ44/40Ca values of NLA volcanics are controlled by the subduction-related metasomatism. The metasomatism by slab-derived fluids (mainly expelled from altered oceanic crust, AOC) dramatically elevated the contents of fluid-mobile elements (e.g., Ba and Pb) with respect to fluid-immobile elements (e.g., Ce). This process, however, rarely modified the Ca isotopes, possibly ascribed to the δ44/40Ca similarity between AOC and the depleted mantle. The δ44/40Ca values significantly correlated with subduction indicators (e.g., Sr-Nd isotopes, Ba/Nb, Ce/Pb, and Nb/La), demonstrating the Ca isotopes of NLA volcanics are mainly controlled by the metasomatism of sediment melts subducting from the South China Sea (SCS). Based on the thermal structures and chemical compositions of sediments subducting into global trenches, we propose that carbonate Ca isotopic signals can only be observed in the arcs with high sedimentary Ca fluxes and temperature-pressure conditions well beyond the solidus of H2O-saturated sediment melting, e.g., NLA, Nicaragua, Guatemala, Colombia, Peru, South Chile, North Vanuatu, New Zealand, and Kermadec. The absence of such signals in other arcs suggests either limited sedimentary fluxes or much of the subducting sedimentary carbonate has been survived during plate subduction to enter the deep mantle.