Abstract-The platinum group elements (PGE; Ru, Rh, Pd, Os, Ir, Pt), Re and Au comprise the highly siderophile elements (HSE). We reexamine selected isotopic and abundance data sets for HSE in upper mantle peridotites to resolve a longstanding dichotomy. Re-0s and Pt-0s isotope systematics, and approximately chondritic proportions of PGE in these rocks, suggest the presence in undepleted mantle of a chondrite-like component, which is parsimoniously explained by late influx of large planetisimals after formation of the Earth's core and the Moon. But some suites of xenolithic and orogenic spinel lherzolites, and abyssal peridotites, have a CI-normalized PGE pattern with enhanced Pd that is sometimes termed "non-chondritic". We find that this observation is consistent with other evidence of a late influx of material more closely resembling enstatite, rather than ordinary or carbonaceous, chondrites. Regional variations in HSE patterns may be a consequence of a late influx of very large objects of variable composition.Studies of many ancient (>3.8 Ga) lunar breccias show regional variations in A d I r and suggest that "graininess" existed during the early bombardment of the Earth and Moon. Reliable Pd values are available only for Apollo 17 breccias 73215 and 73255, however. Differences in HSE patterns between the aphanitic and anorthositic lithologies in these breccias show fractionation between a refractory group (Re, 0 s and Ir) and a normal (Pd, Ni, and Au) group and may reflect the compositions of the impacting bodies. Similar fractionation is apparent between the EH and EL chondrites, whose PGE patterns resemble those of the aphanitic and anorthositic lithologies, respectively.The striking resemblance of HSE and chalcogen (S, Se) patterns in the Apollo aphanites and highPd terrestrial peridotites suggest that the "non-chondritic" abundance ratios in the latter may be reflected in the composition of planetisimals striking the Moon in the first 700 Ma of Earth-Moon history. Most notably, high Pd may be part of a general enhancement of HSE more volatile than Fe suggesting that the Au abundance in at least parts of the upper mantle may be 1.5 to 2x higher than previously estimated.The early lunar influx may be estimated from observed basin-sized craters. Comparison of relative influx to Earth and Moon suggests that the enrichment of HSE is limited to the upper mantle above 670 km. To infer enrichment of the whole mantle would require several large lunar impacts not yet identified.