A common origin for the Moon and Earth is required by their identical isotopic composition. However, simulations of the current giant impact hypothesis for Moon formation find that most lunar material originated from the impactor, which should have had a different isotopic signature. Previous Moon-formation studies assumed that the angular momentum after the impact was similar to that of the present day; however, Earth-mass planets are expected to have higher spin rates at the end of accretion. Here, we show that typical last giant impacts onto a fast-spinning proto-Earth can produce a Moon-forming disk derived primarily from Earth's mantle. Furthermore, we find that a faster-spinning early Earth-Moon system can lose angular momentum and reach the present state through an orbital resonance between the Sun and Moon.
The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High‐energy, high‐angular‐momentum giant impacts can create a post‐impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super‐corotation‐limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon‐forming synestia. Giant impacts that produce potential Moon‐forming synestias were common at the end of terrestrial planet formation.
In the giant impact hypothesis for lunar origin, the Moon accreted from an equatorial circumterrestrial disk; however the current lunar orbital inclination of 5 • requires a subsequent dynamical process that is still debated [1][2][3] . In addition, the giant impact theory has been challenged by the Moon's unexpectedly Earth-like isotopic composition 4, 5 . Here, we show that tidal dissipation due to lunar obliquity was an important effect during the Moon's tidal evolution, and the past lunar inclination must have been very large, defying theoretical explanations. We present a new tidal evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modeling, we show that the solar perturbations on the Moon's orbit naturally induce a large lunar inclination and remove angular momentum from the 1 arXiv:1802.03356v1 [astro-ph.EP] 9 Feb 2018Earth-Moon system. Our tidal evolution model supports recent high-angular momentum giant impact scenarios to explain the Moon's isotopic composition [6][7][8] and provides a new pathway to reach Earth's climatically favorable low obliquity.The leading theory for lunar origin is the giant impact 9, 10 , which explains the Moon's large relative size and small iron core. Here we refer to the giant impact theory in which the Earth-Moon post-impact angular momentum (AM) was the same as it is now (in agreement with classic lunar tidal evolution studies 11, 12 ) as "canonical". In the canonical giant impact model 13 , a Mars-mass body obliquely impacts the proto-Earth near the escape velocity to generate a circum-terrestrial debris disk. The angular momentum of the system is set by the impact, and the Moon accretes from the disk, which is predominantly (> 60 wt%) composed of impactor material. However, Earth and the Moon share nearly identical isotope ratios for a wide range of elements, and this isotopic signature is distinct from all other extraterrestrial materials 4, 5 . Because isotopic variations arise from multiple processes 4 , the Moon must have formed from, or equilibrated with, Earth's mantle 5,14 . Earth-Moon isotopic equilibration in the canonical model has been proposed by Pahlevan and Stevenson 15 , but has been questioned by other researchers 16 , who suggest that the large amount of mass exchange required to homogenize isotopes could lead to the collapse of the proto-lunar disk.Cuk and Stewart 6 proposed a new variant of the giant impact that is based on an initially high AM Earth-Moon system. In this model, a late erosive impact onto a fast-spinning proto-Earth produced a disk that was massive enough to form the Moon, and was composed primarily of material from Earth, potentially satisfying the isotopic observations. Canup 7 presented a variation of a high-2 AM origin in which a slow collision between two similar-mass bodies produces a fast-spinning Earth and disk with Earth-like composition. Subsequently, Lock et al. 8 have argued that a range of hig...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.