2015
DOI: 10.1590/s1413-41522015020000099484
|View full text |Cite
|
Sign up to set email alerts
|

Calibração multivariada de redes de abastecimento de água via algoritmo genético multiobjetivo

Abstract: RESUMO Este trabalho teve por objetivo propor um modelo computacional com vistas à calibração multivariada de modelos hidráulicos de sistemas de distribuição de água que possibilita a identificação de possíveis irregularidades, como: vazamentos, obstruções nas tubulações, válvulas inoperantes ou estranguladas e incompatibilidades na modelagem referente aos dados reais. Utiliza um algoritmo genético multiobjetivo no processo de calibração para ajustar as diferenças das variáveis de estado da rede, a fim de prod… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 7 publications
0
2
0
Order By: Relevance
“…The technique of artificial intelligence by genetic algorithm has been employed in different areas seeking solutions for optimization problems (Miranda et al, 2015;Salvino et al, 2015). The use of genetic algorithm was reported by Costa et al (2010) in the reduction of energy costs in water supply systems.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The technique of artificial intelligence by genetic algorithm has been employed in different areas seeking solutions for optimization problems (Miranda et al, 2015;Salvino et al, 2015). The use of genetic algorithm was reported by Costa et al (2010) in the reduction of energy costs in water supply systems.…”
Section: Resultsmentioning
confidence: 99%
“…The use of genetic algorithm was reported by Costa et al (2010) in the reduction of energy costs in water supply systems. Salvino et al (2015) used genetic algorithm to identify irregularities in water distribution systems in cities. Simões & Ebecken (2016) proved the efficiency of genetic algorithms in the optimization of supports for refinery ovens.…”
Section: Resultsmentioning
confidence: 99%