This study is aimed at developing a pipe-sizing model for a water distribution system. The optimal solution minimises the system's total cost, which comprises the hydraulic network capital cost, plus the capitalised cost of pumping energy. The developed model, called Lenhsnet, may also be used for economical design when expanding existing hydraulic networks. The methodology developed includes an iterative dynamic calculation process as well as a hydraulic simulation model. The performance of the method is tested against 4 benchmark examples in the literature. The results obtained show the feasibility of this model, presenting it as a viable alternative for water distribution systems. The method is easily used, once it is performed under EPANET2 software interface.
The objective of this research study was the development of an intelligent system based on artificial neural networks for water distribution networks that operate with parallel pumps. The purpose of the system is to automate the process and to define the operating state of the electric motors (on, off or with partial rotation speed). The intelligent system developed is generic, which allows the application of its control structure in similar processes, and it was applied in an experimental setup that simulates a real water supply system. The performance of the network was tested experimentally under different operating conditions, including in the presence of disturbances. The settling time was, in all experiments, less than 30 seconds, the tests did not show overshoot and the maximum error was 2.9%. Results showed excellent performance in terms of pressure regulation, and it is hoped that the controller can be successfully implemented in real water distribution systems, in order to reduce water and electricity consumption, decrease maintenance costs and increase the reliability of operating procedures.
RESUMO Este trabalho teve por objetivo propor um modelo computacional com vistas à calibração multivariada de modelos hidráulicos de sistemas de distribuição de água que possibilita a identificação de possíveis irregularidades, como: vazamentos, obstruções nas tubulações, válvulas inoperantes ou estranguladas e incompatibilidades na modelagem referente aos dados reais. Utiliza um algoritmo genético multiobjetivo no processo de calibração para ajustar as diferenças das variáveis de estado da rede, a fim de produzir informações compatíveis com suas respectivas redes reais. O modelo proposto permite utilizar até sete variáveis: a rugosidade, a demanda, a perda de carga singular, a cota topográfica, os vazamentos, os diâmetros e as válvulas, simultaneamente, ou qualquer combinação delas. A aplicação experimental foi realizada no Laboratório de Eficiência Energética e Hidráulica em Saneamento da Universidade Federal da Paraíba (LENHS/UFPB) com os dados do seu Sistema Piloto de Distribuição de Água (SPDA). Os resultados mostraram uma boa convergência com relação ao tempo de processamento e à aproximação dos dados medidos e calculados, assim como possibilitaram a identificação de problemas mediante análise dos parâmetros resultantes da calibração, o que proporciona subsídios para uma reabilitação mais precisa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.