:In view of the fact that the radon progeny contribute the highest to the natural radiation dose to general populations, large scale and long-term measurements of radon and its progeny in the houses have been receiving considerable attention. Solid State Nuclear Track Detector (SSNTD) based systems, being the best suited for large scale passive monitoring, have been widely used for the radon gas (using a cup closed with a semi-permeable membrane) and to a limited extent, for the measurement of radon progeny (using bare mode in conjunction with the cup). These have been employed for radon mapping and indoor radon epidemiological studies with good results. In this technique, alpha tracks recorded on SSNTD films are converted to radon/thoron concentrations using corresponding conversion factors obtained from calibration experiments carried out in controlled environments.The detector response to alpha particles depends mainly on the registration efficiency of the alpha tracks on the detector films and the subsequent counting efficiency. While the former depends on the exposure design, the latter depends on the protocols followed for developing and counting of the tracks. The paper discusses on parameters like etchant temperature, stirring of the etchant and duration of etching and their influence on the etching rates on LR-115 films. Concept of break down thickness of the SSNTD film in spark counting technique is discussed with experimental results. Error estimates on measurement results as a function of background tracks of the films are also discussed in the paper.