Abstract. Functional surfaces with a rising degree of complexity are becoming increasingly important for modern industrial products. It is common knowledge that one cannot produce surfaces better than it is possible to measure them. Consequently, the demand for their effective and precise measurement has increased to the same extent as their production capabilities have grown. Important classes of optical functional surfaces are aspheres and freeforms. Both types of surfaces have become essential parts of modern optical systems such as laser focusing heads, sensors, telescopes, glasses, head-mounted displays, cameras, lithography steppers, and pickup heads. For all of them, the systematic quality control in the process of their fabrication is essential. We review the challenges of asphere and freeform testing and how available metrology systems cope with it. A special focus is on tilted wave interferometry and how it compares to other methods. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.