The measurement of aspheric and free-form surfaces in a non-null test configuration has the advantage that no compensation optics is required. However, if a surface is measured in a non-null test configuration, retrace errors are introduced to the measurement. We describe a method to calibrate the test space of an interferometer, enabling to compensate retrace errors. The method is effective even for strong deviations from null test configuration up to several 100 waves, enabling the fast and flexible measurement of aspheres and free-form surfaces. In this paper we present the application of the method to the calibration of the Tilted Wave Interferometer. Furthermore, the method can be generalized to the calibration of other setups.
The fabrication of aspheres and freeform surfaces requires a high-precision shape measurement of these elements. In terms of accuracy, interferometric systems provide the best performance for specular surfaces. To test aspherical lenses, it is necessary to adapt or partially adapt the test wavefront to the surface under test. Recently, we have proposed an interferometric setup with a diffractive zoom-lens that includes two computer generated holograms for this purpose. 1 Their surface phases are a combination of a cubic function for the adaption of aberrations and correction terms necessary to compensate substrate-induced errors. With this system based on Alvarez design a variable defocus and astigmatism controlled by a lateral shift of the second element is achieved. One of the main challenges is the calibration of the system. We use a black-box model 2 recently introduced for a non-null test interferometer, the so called tilted wave interferometer 3 (TWI). With it, the calibration data are calculated by solving an inverse problem. The system is divided in the two parts of illumination and imaging optics. By the solution of an inverse problem, we get a set of data, which describes separately the wavefronts of the illumination and imaging optics. The main difference to the TWI is the flexible diffractive element, which can be used in continuous positions. To combine the calibration data of a couple of positions with the exact placement, we designed alignment structures on the hologram. We will show the general functionality of this calibration and first simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.